

Environmental Product Declaration

EN ISO 14025:2010 EN 15804:2012+A2:2020

Artificial aggregates

Date of first issue: Review date Expiration Date:

2022-05-20 2022-12-29 2027-05-19

The declared validity is subject to registration and publication on <u>www.aenor.com</u>.

Registration Code: GlobalEPD EN15804-027rev1

FEDERACIÓN DE ÁRIDOS FOA ARIGAL

Federación de Áridos - FdA

The holder of this Declaration is responsible for its content, as well as for keeping the supporting documentation that justifies the data and statements included during the validity period

Federación de Áridos - FdA

Plaza de las Cortes 5, 7^a Planta 28014 - Madrid España Tel. (+34) 915 522 526 Mail secretariafda@aridos.info Web <u>www.aridos.info</u>

GREMI D/

FEDERACIÓN FdA

HANEFA BARIGAL

euskal

LCA study

Instituto Español del Cemento y sus Aplicaciones - IECA Calle José Abascal, 53 28003 - Madrid España
 Tel.
 (+34) 914 411 688

 Mail
 info@ieca.es

 Web
 www.ieca.es

GlobalEPD Programme Administrator

AENOR Internacional S.A.U. C/ Génova 6 28009 – Madrid España

 Tel.
 (+34) 902 102 201

 Mail
 aenordap@aenor.com

 Web
 www.aenor.com

AENOR is a founding member of the ECO Platform, the European Association of Verification Programs for Environmental Product Declarations

EN 15804:2012+A2:2020				
Independent verific	ation of declaration and	data in accordance with EN ISO 14025:2010 ⊠External		
Verification body				

3

1. General information

1.1. Organization

The Federation of Aggregates, hereinafter FdA, incorporated in 2007, is a non-profit organisation, composed of ANEFA, ARIGAL, ARIVAL, EUSKAL ÁRIDO and GREMI D'ÀRIDS DE CATALUNYA, which represents the interests of aggregates producing companies in Spain, both nationally and internationally.

The objectives of the FdA include the promotion of the sustainable development of the sector, environmental protection and corporate social responsibility, through technical improvement, the application of good practices and compliance with standards and regulations on production and product quality, environment, etc.

With this sectoral EPD, the FdA focuses on promoting corporate social responsibility strategies, in addition to:

- The circular economy.
- Facilitate the marketing of their products.
- Reduce the risk associated with changes in environmental legislation or customer purchasing criteria.
- Communicate, in a standardized way, the environmental performance of its products and services.

The holder of this sectoral Environmental Product Declaration - EPD - is the FdA, whose contact details can be found on page 2 of this declaration.

This sectoral EPD is for the exclusive use of the undertakings and establishments listed in ANNEX I.

1.2. Scope of the Declaration

This sectoral EPD includes only modules A1-A3, product stage according to the modular scheme defined in UNE- EN 15804+A2.

This EPD is therefore of the "cradle to door" type.

1.3. Lifecycle and Compliance

This EPD has been developed and verified in accordance with UNE-EN ISO 14025:2010 and UNE-EN 15804:2012+A2:2020.

Product	category rule information
Descriptive title	Sustainability in construction. Environmental product declarations. Basic rules of product categories for construction products.
Registration code and version	UNE-EN 15804:2012 + A2:2020
Date of issue	2020-03
Compliance	UNE-EN 15804:2012 + A2:2020
Program Officer	AENOR Internacional S.A.U.

This environmental statement includes the following stages of the life cycle:

System limitations. Information modules taken into account

ModelA2Transport to the factoryXA3ManufactureXA4Transport to the siteMNEA5Installation / constructionMNEB1UsageMNEB2MaintenanceMNEB3RepairMNEB4ReplacementMNEB5RehabilitationMNEB6In-service energy consumptionMNEB7In-service water consumptionMNEC1Deconstruction / demolitionMNEC2TransportMNEC4EliminationMNEDPotential for reuse, recovery and/or recyclingMNE	Product stage	A1	Supply of raw materials	Х
A3 Manufacture X Note A3 Manufacture X A4 Transport to the site MNE A5 Installation / construction MNE B1 Usage MNE B2 Maintenance MNE B3 Repair MNE B4 Replacement MNE B5 Rehabilitation MNE B6 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE		A2	Transport to the factory	х
NoteA4Transport to the siteMNEA5Installation / constructionMNEA5Installation / constructionMNEB1UsageMNEB2MaintenanceMNEB3RepairMNEB4ReplacementMNEB5RehabilitationMNEB6In-service energy consumptionMNEB7In-service water consumptionMNEC1Deconstruction / demolitionMNEC2TransportMNEC3Residue treatmentMNEC4EliminationMNEDPotential for reuse, recovery and/or recyclingMNE		A3	Manufacture	Х
A5Installation / constructionMNEB1UsageMNEB2MaintenanceMNEB3RepairMNEB4ReplacementMNEB5RehabilitationMNEB6In-service energy consumptionMNEB7In-service water consumptionMNEC1Deconstruction / demolitionMNEC2TransportMNEC3Residue treatmentMNEC4EliminationMNEDPotential for reuse, recovery and/or recyclingMNE	uction	A4	Transport to the site	MNE
B1UsageMNEB2MaintenanceMNEB3RepairMNEB3RepairMNEB4ReplacementMNEB5RehabilitationMNEB6In-service energy consumptionMNEB7In-service water consumptionMNEC1Deconstruction / demolitionMNEC2TransportMNEC3Residue treatmentMNEC4EliminationMNEDPotential for reuse, recovery and/or recyclingMNE	Constr	A5	Installation / construction	MNE
B2 Maintenance MNE B3 Repair MNE B4 Replacement MNE B5 Rehabilitation MNE B6 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE		B1	Usage	MNE
B3 Repair MNE B4 Replacement MNE B5 Rehabilitation MNE B6 In-service energy consumption MNE B7 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE		B2	Maintenance	MNE
B4 Replacement MNE B5 Rehabilitation MNE B6 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	se	B3	Repair	MNE
B5 Rehabilitation MNE B6 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	e of u	B4	Replacement	MNE
B6 In-service energy consumption MNE B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	Stage	B5	Rehabilitation	MNE
B7 In-service water consumption MNE C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	0)	B6	In-service energy consumption	MNE
C1 Deconstruction / demolition MNE C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE		B7	In-service water consumption	MNE
C2 Transport MNE C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE		C1	Deconstruction / demolition	MNE
C3 Residue treatment MNE C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	r life	C2	Transport	MNE
C4 Elimination MNE D Potential for reuse, recovery and/or recycling MNE	Later	C3	Residue treatment	MNE
D Potential for reuse, MNE recovery and/or recycling		C4	Elimination	MNE
		D	Potential for reuse, recovery and/or recycling	MNE

relevant; EMN = Unassessed module

This EPD may not be comparable to those developed in other programmes or in different reference documents. In particular, it may not be comparable to EPD not developed in accordance with UNE-EN 15804+A2.

Similarly, EPD may not be comparable if the source of the data is different (e.g. databases), if not all relevant information modules are included, or if they are not based on the same scenarios.

The comparison of construction products must be carried out on the same function, applying the same functional unit and at the level of the building (or architectural or engineering work), i.e. including the behavior of the product throughout its life cycle, as well as the specifications of section 6.7.2 of UNE-EN ISO 14025.

2. The product

2.1. Product identification

Aggregates are normally defined as fragments or grains of mineral materials, inert solids that, with appropriate particle size, can be used in construction (building and infrastructure) and in many industrial applications, alone or with the addition of cement, lime or bituminous binder.

Aggregates are classified according to their origin:

- Natural aggregates.
- Artificial aggregates.
- Recycled aggregates.

This sectoral EPD applies to artificial aggregates.

Artificial aggregates are residues from industrial processes, such as iron and steel slag, foundry sands, fly ash from coal combustion, etc., which, after a crushing and classification process (if necessary), make it possible to obtain an aggregate that can be used in certain applications.

2.2. Product Uses.

The main areas of application of aggregates can be summarized as follows:

- Aggregates for mortar, according to UNE-EN 13139.
- Aggregates for hydrocarbon mixtures and surface coatings used in the construction of pavements, aerodromes and other traffic areas, according to UNE EN 13043.
- Aggregates for materials treated with hydraulic binders and untreated materials used for civil engineering works and for pavement construction, according to UNE EN 13242.

 Aggregates for railway ballasts, according to UNE EN 13450.

5

 Aggregates for riprap – Part 1: Specifications, according to UNE EN 13383-1.

2.3. Product Performance

The performance of aggregates can be summarized in the indicator describing the resistance to fragmentation via the Los Angeles coefficient.

Performance	Calculation or test method	Value	Units
Resistance to fragmentation (Los Angeles coefficient)	A-EN 1097-2	≤45	Dimensionle ss

2.4. Composition of the product

The composition of the product refers in all cases to the nature of the aggregate or to the weighted composition of the aggregate. The percentage of artificial aggregates used annually in construction is very low (about 0.75Mt per year in Spain). They represent 0.10% of the total production of aggregates in Spain.

The weighted composition of artificial aggregates of FdA member companies is as follows:

Type of material	Total (%)				
Steelworks slag	Steelworks slag				
Municipal solid	waste	3,63%			
incineration slag					
Steel slag		6,05%			
Grand total		100,00%			

3. Information about LCA

3.1. Life Cycle Assessment

Thistte EPD is based on an A1-A3 life cycle assessment "from cradle to door", carried out by IECA with the collaboration of Marcel Gómez consultoría Ambiental.

3.2. Declared unit

6

1 ton of artificial aggregates.

3.3. Reference useful life (RSL)

In general, the reference service life will be that of the element or application in which the aggregates are used, ranging from 50 to 100 years.

3.4. Distribution criteria

For flows associated with the production process, such as energy consumption and residue generation, a physical criterion (mass) was applied to allocate inputs and outputs from the production system to each product, based on production. No simplification has been made to these flows and they are taken into account in their entirety. The allocation of co-products was a financial allocation.

3.5. Representativeness, quality and selection of data

Tomodeltheoverallprocessing/manufacturingprocess,productiondatafromcompaniesparticipating inthis EPwere used for the year2019, which is considered the base year.

These plants reported data on: energy consumption for processing in the plant to shipment, consumables, transportation distances, tailings production and all production operations likely to generate environmental impacts. In general, activity data is obtained through complete records of annual production through reliable measurement processes for each of the production centers associated with the FdA. The data are all for the year 2019, with a temporal correlation between 1 and 10 years compared to the sets in the database. With a satisfactory Spanish geographical correlation in relation to representative groups of the European context and, finally, with an equal or similar technological correlation in relation to flows for processes such as the use of machinery or transport equipment.

The management and control of the data guarantee the quality of the data in terms of representativeness and consistency, established by the FdA.

The Ecoinvent Data Quality system was used as a methodology for data quality assessment during LCA development.

3.6. Other calculation rules and assumptions

The inventory data used is the weighted average of the specific data corresponding to the artificial aggregate. The weights are based on the output of each individual farm in relation to total production.

These aggregates include all the variability of the typologies of the population of the holdings considered, both from the point of view of the type of farm, the technology used and the origin of the aggregate (see section 3). It includes operations throughout the country.

The aggregates production considered represents 71.0% of that integrated into the FdA and 57.1% of the total of Spain.

With regard to the source of the data, data from the Ecoinvent 3.8 manufacturer survey and processes were used when these data were not available or when modelling transport and similar processes.

Weighted averages were taken into account for site-attributable energy consumption for both electricity and diesel and natural gas.

The electricity mix is that of 2019 based on REE data. The percentage of renewable electricity produced and consumed in the facility represents 2.37% of the total.

Transport was considered from the origin of the aggregate or consumable, whether by truck, sea or rail. Each site also reported the road transport distance for each of the secondary materials (explosives and detonating cords, diesel, gasoline, fuel oil, lubricants, additives and flocculants).

The total quantity transported and the weighted average distance were therefore determined for each production site.

For consumables and raw materials, the aggregate tonne*kilometre ratios are 0.010 t*km and 3.380 t*km respectively.

4. System limitations, scenarios and additional technical information

The "cradle-to-door" approach was a cradle-todoor approach, i.e. an A1-A3 declaration where:

A1, supply of steel slag according to the polluter-pays principle.

A2, transport of aggregates to the treatment site. Transport of consumables and fuels to the processing site.

A3, artificial aggregates treatment centre

Information modules not considered should be marked as "Unassessed Module (UNM)". The cradle-to-door approach is justified because, in most of the applications mentioned, aggregates lose their physical identity since they are constituents of other building products such as concrete, mortars, road surfaces, etc.

The following criteria were used to select the most representative processes:

- Be representative data on the technological development actually applied.
- In general, the data provided by the manufacturers were taken into account according to the proximity criterion, i.e. the use of the data provided by the manufacturers.

Simplifications have been avoided as far as possible, retaining all the variability of the input data in terms of their type, nature and processing.

4.1. Upstream process

The process begins with the acquisition of steel slag.

4.2. Transportation processes

Module A2 includes the transport of aggregates to processing sites, as well as the transport of consumables, spare parts and fuels to farms.

4.3. Product Manufacturing

Module A3 includes the treatment of artificial aggregates in the plant in a manner totally equivalent to that of natural aggregates. Sites can include a wide variety of processes, including the usual crushing, grinding and classification.

The general approach used is described in the diagram below:

5. LCA and ICV Environmental Parameter Declarations

The estimated impact results are relative and do not indicate the final value of the impact categories, nor do they refer to threshold values, safety margins or risks.

Environmental impacts						
Parameter	Units	A1	A2	A3	A1+A2+A3	
PRP - total	kg CO₂ eq.	0,00E+00	4.59E-01	3.23E+00	3.69E+00	
GWP - fossil	kg CO₂ eq.	0,00E+00	4.58E-01	3.21E+00	3.67E+00	
GWP - biogenic	kg CO₂ eq.	0,00E+00	2.68E-05	1.27E-02	1.27E-02	
GWP - Iuluc	kg CO₂ eq.	0,00E+00	3.71E-06	2.82E-03	2.83E-03	
ODP	kg CFC 11 eq.	0,00E+00	1.09E-07	5.61E-07	6.70E-07	
АР	mol H⁺ eq.	0,00E+00	9.12E-04	2.69E-02	2.78E-02	
EP - freshwater	kg PO₄³- eq.	0,00E+00	9.01E-05	3.80E-03	3.89E-03	
EP - marine	kg N eq.	0,00E+00	1.51E-04	1.01E-02	1.02E-02	
EP - terrestrial	mol N eq.	0,00E+00	1.68E-03	1.12E-01	1.13E-01	
РОСР	kg NMVOC eq.	0,00E+00	5.94E-04	3.10E-02	3.16E-02	
ADP - minerals and metals ¹	kg Sb eq.	0,00E+00	1.99E-08	4.32E-06	4.34E-06	
ADP - fossil ¹	MJ	0,00E+00	6.51E+00	6.23E+01	6.88E+01	
WDP ¹	m ³	0,00E+00	-1.10E-03	9.12E-01	9.11E-01	

GWP-total: Global warming potential; GWP-fossil: Global warming potential of fossil fuels; Biogenic GWP: Biogenic Global Warming Potential; GWP-luluc: Global warming potential of land use and land-use change; ODP: Stratospheric ozone depletion potential; AP: Acidification potential, cumulative surplus; PE-freshwater (freshwater): Eutrophication potential, fraction of nutrients reaching the final freshwater compartment; EP-marine: Eutrophication potential, fraction of nutrients reaching the final compartment of seawater; EP-terrestrial: Eutrophication potential, cumulative surplus; POCP: Potential for tropospheric ozone formation; ADP-minerals and metals . Depletion potential of abiotic resources for non-fossil resources; Fossil ODA: Potential for depletion of abiotic resources for fossil resources; WDP: Water deprivation potential (user), weighted water deprivation consumption. NR: Not relevant

¹ The results of this environmental impact indicator should be used with caution as the uncertainties of these results are high and experience with this parameter is limited.

Parameter	Units	A1	A2	A3	A1-A3
PERE	MJ	0,00E+00	9.97E-03	4.63E+00	4.64E+00
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	0,00E+00	9.97E-03	4.63E+00	4.64E+00
PENRE	MJ	0,00E+00	6.51E+00	6.05E+01	6.70E+01
PENRM	MJ	0,00E+00	0,00E+00	1.82E+00	1.82E+00
PENRT	MJ	0,00E+00	6.51E+00	6.23E+01	6.88E+01
SM	Kg	0,00E+00	0,00E+00	1.07E+03	1.07E+03
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m ³	0,00E+00	1.67E-05	1.95E-02	1.95E-02

Resource utilization

PERE: Use of renewable primary energy excluding renewable primary energy resources used as raw material; PERM: Use of renewable primary energy; PENRE: Use of non-renewable primary energy, excluding non-renewable primary energy resources used as raw material; PENRM: Use of non-renewable primary energy used as raw material; PENRM: Use of non-renewable primary energy used as raw material; PENRM: Use of non-renewable primary energy used as raw material; PENRT: Total non-renewable primary energy consumption; SM: Use of secondary materials; RSF: Use of renewable secondary fuels; RSF: Use of non-renewable secondary fuels; FW: Net use of piped water resources; NR: Not relevant

Waste categories

Parameter	Units	A1	A2	A3	A1-A3
HWD	Kg	0,00E+00	1.71E-05	1.07E-03	1.08E-03
NHWD	Kg	0,00E+00	2.68E-04	1.85E-01	1.86E-01
RWD	Kg	0,00E+00	4.65E-05	4.44E-04	4.91E-04

HWD: Hazardous waste disposed of; NHWD: Non-hazardous waste disposed of; RWD: Radioactive residues disposed of; NR: Not relevant

Output stream

Parameter	Units	A1	A2	A3	A1-A3
RAW	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	Kg	0,00E+00	0,00E+00	4.28E-02	4.28E-02
SEA	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00

CRU: Components for reuse; MFR: Materials for recycling; MER: Materials for energy recovery; EE: Energy exported; NR: Not relevant

Information on biogenic carbon content

Biogenic carbon content	Units	Result per reported functional unit
Biogenic carbon content produced - kgC	kg C	0,00E+00

6. Additional environmental information

Artificial aggregates are free of volatile organic compounds that may be emitted during use.

They also do not emit compounds into soil or water during the use phase, as the product does not undergo physical, chemical or biological transformation, is not soluble or combustible, does not react physically, chemically or otherwise, it is not biodegradable, does not adversely affect other materials with which it comes into contact in a way that could lead to contamination of the environment or harm to health. human being. It is a non-leaching product and therefore does not pose a risk to surface or groundwater quality.

The product does not contain substances on the European Agency for Chemical Products and Preparations' Candidate List of Substances of Very High Concern for Authorisation.

13

Appendix 1. Associated production sites

PROMOTORA MEDITERRÀNEA-2, S.A.

SANT VICENÇ DELS HORTS ZARAGOZA MEGASA

7. References

[1] General Regulations of the GlobalEPD Programme, 2nd revision. AENOR. February 2016

[2] UNE-EN ISO 14025:2010 Environmental labels. Type III environmental declarations. Principles and procedures (ISO 14025:2006).

[3] Standard UNE-EN 15804:2012+A2:2020. Sustainability in construction. Environmental product declarations. Basic rules for product categories for construction products [4] UNE-EN ISO 14040 standard. Environmental management. Life cycle assessment. Principles and terms of reference. 2006.

[5] UNE-EN ISO 14044 standard.Environmental management. Life cycle assessment. Requirements and guidelines.2006

[6] LCA report Marcel Gómez consultoría Ambiental. April 2022. Version 1.

Index

1.	General information	3
2.	The product	5
3.	Information about LCA	6
4.	System limitations, scenarios and additional technical information	8
5.	LCA and ICV Environmental Parameter Declarations	9
6.	Additional environmental information	12
7.	References	14
Ind	ex	15

A VERIFIED ENVIRONMENTAL DECLARATION

Global EPD